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Anderson: Ensemble Tutorial 1

Prelude: The Data Assimilation Problem:

Given: 1. A physical system (atmosphere, oc
_______________________________________

2. Observations of the physical syste

Usually sparse and irregular in time and spac
Instruments have error of which we have a (p
Observations may be of ‘non-state’ quantities
Many observations may have very low inform

_______________________________________

3. A model of the physical system

Usually thought of as approximating time evo
Could also be just a model of balance (attrac
Truncated representation of ‘continuous’ phy
Often quasi-regular discretization in space an
Generally characterized by ‘large’ systematic
May be ergodic with some sort of ‘attractor’.
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We want to increase our information abou
_________________________________________________

1. Get an improved estimate of state of physica

Includes time evolution and ‘balances’.
Initial conditions for forecasts.
High quality analyses (re-analyses).

_________________________________________________

2. Get better estimates of observing system err

Estimate value of existing observations.
Design observing systems that provide increased informat

_________________________________________________

3. Improve model of physical system

Evaluate model systematic errors.
Select appropriate values for model parameters.
Evaluate relative characteristics of different models.
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Towards a General, Flexible Assimilation

Goals:

1. Assimilation that works with variety of models

2. Coding for system must be easy to implemen

(This appears to rule out variational method

3. Must allow complicated forward operators.

4. GOOD assimilation results for novice users.
    EXCELLENT results with added expertise/de

5. GOOD performance on variety of platforms w
    EXCELLENT performance with added exper
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The Data Assimilation Research Testbed

A. Combine assimilation algorithms, models, an

B. Diagnostic tools for assimilation experimenta

C. Compliant models and observation sets (rea

D. A high-quality, generic ensemble filtering a

Assimilation Initiative

Model 1

Model 2

Model n

Ob

O

O

DART Filter

Diagnostic
     Tools
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Ensemble Filters for Geophysical Data Assimil

Jeffrey Anderson
NCAR Data Assimilation Initiat

Objective: Provide a simple but clear introductio

Phase 1: Single variable and observation of

Phase 2: Single observed variable, single un

Phase 3: Generalize to geophysical models

Phase 4: Quick look at a real atmospheric a
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Bayes rule:

A: Prior estimate based on all previous information
B: An additional observation.

: Posterior (updated estimate) based o
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Bayes rule:

A: Prior estimate based on all previous informa
B: An additional observation.

: Posterior (updated estimate) based o
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Bayes rule:

A: Prior estimate based on all previous informa
B: An additional observation.

: Posterior (updated estimate) based o
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Bayes rule:

A: Prior estimate based on all previous informa
B: An additional observation.

: Posterior (updated estimate) based o
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Bayes rule:

A: Prior estimate based on all previous informa
B: An additional observation.
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Consistent Color Scheme Througho

Green = Prior

Red = Observation

Blue = Posterior
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Bayes rule:

This product is closed for Gaussian distribution
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Bayes rule:

This product is closed for Gaussian distribution
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

Covariance:

Mean:

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=

Σ Σ1
1– Σ2

1–+( ) 1–=

µ Σ1
1– Σ2

1–+( ) 1– Σ1
1– µ1 Σ2

1– µ2+( )=
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

Covariance:

Mean:

Weight:

We’ll ignore the weight unless noted since we im
products to be PDFs.

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=

Σ Σ1
1– Σ2

1–+( ) 1–=

µ Σ1
1– Σ2
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

Covariance:

Mean:

Weight:

Easy to derive for 1-D Gaussians; just do produ

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=

Σ Σ1
1– Σ2

1–+( ) 1–=
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Bayes rule:

Ensemble filters:Prior is available as finite sample

Don’t know much about properties of this samp
May naively assume it is random draw from ‘tru
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Bayes rule:

How can we take product of sample with contin

Fit a continuous (Gaussian for now) distribution
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Bayes rule:

Observation likelihood usually continuous (near

If Obs. Likelihood isn’t Gaussian, can generaliz
For instance, can fit set of Gaussian kernels to 
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Bayes rule:

Product of prior Gaussian fit and Obs. likelihood

Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.
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Sampling Posterior PDF:

There are many ways to do this.

Exact properties of different methods may be u
Trial and error still best way to see how they pe
Will interact with properties of prediction models
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Compute posterior PDF (same as previous algo
−4 −2 0
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Use deterministic algorithm to ‘adjust’ ensemble
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Use deterministic algorithm to ‘adjust’ ensemble
First, ‘shift’ ensemble to have exact mean o
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Mean Shifted
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Use deterministic algorithm to ‘adjust’ ensemble
First, ‘shift’ ensemble to have exact mean o
Second, use linear contraction to have exac
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

    i = 1,..., ensemb

p is prior,      u is update (posterior),    overbar i
σ is standard deviation.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Bimodality maintained, but not appropriately po
No problem with random outliers.
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Phase 2: Single observed variable, single uno

So far, have known observation likelihood for si

Now, suppose prior has an additional variable.

Will examine how ensemble methods update ad

Basic method generalizes to any number of add

Methods related to Kalman filter in some sense
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state

Two primary error sources:

1. Linear approximation is invalid.
Substantial nonlinearity in ‘true’ relation 

2. Sampling error due to noise.
Even if linear relation, sample regression

May need to address both issues for good perfo
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Ways to deal with regression samplin

1. Ignore it: if number of unrelated observations
and there is some way of maintaining varian

2. Use larger ensembles to limit sampling error.

3. Use additional a priori information about rela
observations and state variables.

4. Try to determine the amount of sampling erro
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olynomial.

2000
?)
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Ways to deal with regression samplin

3. Use additional a priori information about rela
observations and state variables.

Atmospheric assimilation problems.
Weight regression as function of horizontaldistanc
Gaspari-Cohn: 5th order compactly supported p
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Ways to deal with regression samplin

3. Use additional a priori information about rela
observations and state variables.

Can use other functions to weight regression.
Unclear whatdistance means for some obs./state
Referred to asLOCALIZATION.
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Ways to deal with regression samplin

4. Try to determine the amount of sampling erro

A. Could weight regressions based on samp
Limited success in tests.
For small true correlations, can still get la

B. Do bootstrap with sample correlation to m
Limited success.
Repeatedly compute sample correlation

C. Use hierarchical Monte Carlo.
Have a ‘sample’ of samples.
Compute expected error in regression co
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 ensembles.

es 4 groups of 20.

efficient,βi.

inimizes:

te increments).
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Ways to deal with regression samplin

4C. Use hierarchical Monte Carlo: ensemble of

Split ensemble into M independent groups.
For instance, 80 ensemble members becom

With M groups get M estimates of regression co

Find regression confidence factorα (weight) that m

Minimizes RMS error in the regression (and sta

αβi β j–[ ]2

i 1 i j≠,=

M
∑

j 1=

M
∑
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n statistics forα.
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mple mean regression)
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Ways to deal with regression samplin

4C. Use hierarchical Monte Carlo: ensemble of
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(1)

(2)

 (nice, not essential).

(3)

(4)

 t:

(5)

tk t0≥>
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Phase 3: Generalize to geophysical models a

Dynamical system governed by (stochastic) Dif

Observations at discrete times:

Observational error white in time and Gaussian

Complete history of observations is:

Goal: Find probability distribution for state at time

dxt f xt t,( )= G xt t,( )dβt+ t 0≥,

yk h xk tk,( )= vk k;+ 1 2 … tk 1+;, ,=

vk N 0 Rk,( )→

Yτ yl tl τ≤;{ }=

p x t Yt,( )
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 Difference Equation.

(6)

(7)

(8)

ator:

(9)

1
)

------

x
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Phase 3: Generalize to geophysical models a

State between observation times obtained from
Need to update state given new observation:

Apply Bayes rule:

Noise is white in time (3) so:

Integrate numerator to get normalizing denomin

p x tk Ytk
,( ) p x tk yk Ytk 1–

,,( )=

p x tk Ytk
,( )

p yk xk Ytk 1–
,( ) p x tk Ytk –

,(

p yk Ytk 1–
( )

-----------------------------------------------------------------------=

p yk xk Ytk 1–
,( ) p yk xk( )=

p yk Ytk 1– 
  p yk x( ) p x tk Ytk 1–

,( )d∫=
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(10)

t x and y are vectors.

 each observation.

 state vector.

1
)

)dξ
---------
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Phase 3: Generalize to geophysical models a

Probability after new observation:

Exactly analogous to earlier derivation except tha

EXCEPT, no guarantee we have prior sample for

SO, let’s make sure we have priors by ‘extending’

p x tk Ytk
, 

 
p yk x( ) p x tk Ytk –

,(

p yk ξ( ) p ξ tk Ytk 1–
,(∫

---------------------------------------------------------=
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on vector.

(2)

ues of observations.

mple of state vector x.

 observations.

1 tk t0≥>
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Phase 3: Generalize to geophysical models a

Extending the state vector to joint state-observati

Recall:

Applying h to x at a given time gives expected val

Get prior sample of obs. by applying h to each sa

Let z = [x, y] be the combined vector of state and

yk h xk tk,( )= vk k;+ 1 2 … tk +;, ,=
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Phase 3: Generalize to geophysical models a

NOW, we have a prior for each observation:

p z tk Ytk
, 

 
p yk z( ) p z tk Ytk 1–

,( )

p yk ξ( ) p ξ tk Ytk 1–
,( )dξ∫

------------------------------------------------------------------=
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ons in set yk?

 of those in set j.

rmalizations.

yk
1

yk
2 … yk

s, , ,{ }=
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Phase 3: Generalize to geophysical models a

One more issue: how to deal with many observati

Let yk be composed of s subsets of observations:

Observational errors for obs. in set i independent

Then:

Can rewrite (10.ext) as series of products and no

yk

p yk z( ) p yk
i z( )

i 1=

s

∏=



4/22/05

nd observations

ons in set yk?

equentially.

y independent error
 sequentially.
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e obs. error covariance.
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dent errors!
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Phase 3: Generalize to geophysical models a

One more issue: how to deal with many observati

Implication: can assimilate observation subsets s

If subsets are scalar (individual obs. have mutuall
distributions), can assimilate each observation

If not, have two options:
1. Repeat everything above with matrix algebr

2. Do singular value decomposition; diagonaliz
Assimilate observations sequentially in rot
Rotate result back to original space.

Good news: Most geophysical obs. have indepen
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How an Ensemble Filter Works for Geophysical D

Ensemble state
estimate after using
previous observation
(analysis).

Ensemble state at
time of next obser-
vation (prior).

tk tk+1

1. Use model to advanceensemble (3 members he
to time at which next observation becomes ava

*
*
*
*
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How an Ensemble Filter Works for Geophysical D

2. Get prior ensemble sample of observation, y
applying forward operator h to each ensemble m

Theory: ob
from instru
uncorrelat
be done s

y

*
*
*
*

h h
h
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How an Ensemble Filter Works for Geophysical D

3. Getobserved valueandobservational error distr
from observing system.

y

*
*
*
*

h h
h
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How an Ensemble Filter Works for Geophysical D

4. Findincrement for each prior observation ense
(this is a scalar problem for uncorrelated observ

y

*
*
*
*

h h
h Note: Differen

different flavo
ble filters is pr
observation in
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How an Ensemble Filter Works for Geophysical D

5. Use ensemble samples of y and each state v
regress observation increments onto state varia

y

*
*
*
*

h h
h

Theory:
observa
each sta
handled
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How an Ensemble Filter Works for Geophysical D

6. When all ensemble members for each state 
have a new analysis. Integrate to time of next o

y

*
*
*
*

h h
h

tk
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m

Observati
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m
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pling Error;
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 Error;
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Some Error Sources in Ensemble

y

*
*
*
*

h h
h

tk

1. Model Error

2. h errors;
Representativeness

4. Sam
Gauss

5. Sampling
Assuming L
Statistical R

3. ‘Gross’ Obs. Errors
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Dealing With Ensemble Filter Er

y

*
*
*
*

h h
h

y

tk+2

tk

1. Model Error

2. h errors;
Representativeness

4. Sampling Error;
Gaussian Assumption

5. Sampling Error;
Assuming Linear
Statistical Relation

Fix 1, 2, 3
HARD bu

Often, ens

1-4: Cova
Increase p
to give ob

5. ‘Localiz
obs. impa
‘nearby’ s

Often smo
impact to 
distance.

3. Gross Obs. Errors
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Model/Filter Error; Filter Divergence and Vari

1. History of observations and physical system 
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Model/Filter Error; Filter Divergence and Vari

1. History of observations and physical system 
2. Sampling error, some model errors lead to ins

3. Can lead to ‘filter divergence’: prior is too con
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Model/Filter Error; Filter Divergence and Vari

1. History of observations and physical system 
2. Sampling error, some model errors lead to ins

3. Naive solution is Variance inflation: just incre

4. For ensemble member i,
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inflate xi( ) λ xi x–(=
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Model/Filter Error; Filter Divergence and Vari

1. History of observations and physical system 
.
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Model/Filter Error; Filter Divergence and Vari

1. History of observations and physical system 
2. Most model errors also lead to erroneous sh

3. Again, prior can be viewed as being TOO CE
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Model/Filter Error; Filter Divergence and Vari

1. History of observations and physical system 
2. Most model errors also lead to erroneous sh

3. Again, prior can be viewed as being TOO CE
4. Inflating can ameliorate this
5. Obviously, if we knew E(error), we’d correct f
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Physical Space Variance Inflatio

Inflate all state variables by same amount befor

Capabilities:

1. Can be very effective for a variety of mod

2. Can maintain linear balances.

3. Stays on local flat manifolds.

4. Simple and inexpensive.

Liabilities:

1. State variables not constrained by observ

For instance unobserved regions near th

2. Magnitude ofλ normally selected by trial a
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Physical space covariance inflation in L

Observation outside prior: danger of filter diverg
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Physical space covariance inflation in L

After inflating, observation is in prior cloud: filter
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Physical space covariance inflation in L

Prior distribution is significantly ‘curved’
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Physical space covariance inflation in L

Inflated prior outside attractor. Posterior will als
Can lead 
attractor b

Model ‘blo

Obser
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Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior
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Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior

2. Expected(prior mean - observation) =

Assumes that prior and observation are sup
Is it model error or random chance?
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Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior

2. Expected(prior mean - observation) =

3. Inflating increases expected separation.
Increases ‘apparent’ consistency between p
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Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior

Distance, D, from prior mean y to obs. is

Prob. yo is observed givenλ:
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati

Assume some form for prior distribution forλ (Gau
(Could assume other type of distribution or eve
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,

2. Inflate ensemble using mean of updatedλ distribu
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,

2. Inflate ensemble using mean of updatedλ distribu
3. Compute posterior for y using inflated prior.
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,

2. Inflate ensemble using mean of updatedλ distribu
3. Compute posterior for y using inflated prior.
4. Compute increments from ORIGINAL prior e
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Phase 4: Quick look at a real atmospheric appl

Results from CAM Assimilation: Janu
Model:

CAM 3.0 T42L26
U,V, T, Q and PS state variables impacted b
Land model (CLM 2.0) not impacted by obs
Climatological SSTs.

Assimilation / Prediction Experiments:
80 member ensemble divided into 4 equal g
Initialized from a climatological distribution (
Initial tests for January, 2003.
Uses most observations used in reanalysis

(Radiosondes, ACARS, Satellite Winds..
Assimilated every 6 hours; +/- 1.5 hour wind
Adaptive error correction algorithm with fixe
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Southern Hemisphere Temperature: Bi
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Tropics Temperature: Bias and R

Bias RMS
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North America Temperature: Bias a

Bias RMS
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Northern Hemisphere Wind: Bias an

Bias RMS
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Southern Hemisphere Wind: Bias a

Bias RMS
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Tropical Wind: Bias and RMS

Bias RMS
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Northern America Wind: Bias and

Bias RMS
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Conclusions

1. It is easy to incorporate a model in an ensem

2. Naive use of ensemble filters cannot compet

3. Algorithms to deal with variance loss are ava

4. Algorithms to deal with systematic error unde

5. Hard part remaining is dealing with nasty, dir

6. Ensemble algorithms are now nearly compet

7. Don’t believe any comparative results that arent 
QC, plotting details, who knows what else c
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Data Assimilation Research Testbed (

Software to do everything here (and more) is in

Requires F90 compiler, Matlab.

Available from www.image.ucar.edu/DAI/DART/
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DART compliant models (largest set ever with assi

1. Many low-order models (Lorenz63, L84, L96
2. Global 2-level PE model (from NOAA/CDC)
3. CGD’s CAM 2.0 & 3.0 (global spectral model
4. GFDL FMS B-grid GCM (global grid point mo
5. MIT GCM (from Jim Hansen; configured for a
6. WRF model
7. NCEP GFS (assisted by NOAA/CDC)
8. GFDL MOM3/4 ocean model
9. ACD’s ROSE model (upper atmosphere with

This allows for a hierarchical approach to filter d
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DART compliant Forward Operators and Datase

Many linear and non-linear forward operators for 

U, V, T, Ps, Q, for realistic models.

Radar reflectivity, GPS refractivity for realistic mo

Can ingest observations from reanalysis or opera

Can create synthetic (perfect model) observations


